Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing
نویسندگان
چکیده
Stem-cell-based therapies have attracted considerable interest in regenerative medicine and oncological research. However, a major limitation of systemic delivery of stem cells is the low homing efficiency to the target site. Here, we report a serendipitous finding that various iron-based magnetic nanoparticles (MNPs) actively augment chemokine receptor CXCR4 expression of bone-marrow-derived mesenchymal stem cells (MSCs). On the basis of this observation, we designed an iron-based nanocluster that can effectively label MSCs, improve cell homing efficiency, and track the fate of the cells in vivo. Using this nanocluster, the labeled MSCs were accurately monitored by magnetic resonance imaging and improved the homing to both traumatic brain injury and glioblastoma models as compared to unlabeled MSCs. Our findings provide a simple and safe method for imaging and targeted delivery of stem cells and extend the potential applications of iron-based MNPs in regenerative medicine and oncology.
منابع مشابه
Correction to Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing
On page 4412, the Acknowledgment section should include “Research at Yonsei University was supported by National Creative Research Initiatives Program (2010-0018286) and Korea Healthcare Technology R&D Project, Ministry for Health & Welfare Affairs, Republic of Korea (HI08C2149)”. This change does not affect the reported results, discussions, or conclusion in this paper. The authors apologize f...
متن کاملPretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention
Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...
متن کاملMild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells
Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...
متن کاملMelatonin Pretreatment Enhances the Homing of Bone Marrow-derived Mesenchymal Stem Cells Following Transplantation in a Rat Model of Liver Fibrosis
Background: Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has been considered as a promising milestone in liver fibrosis treatment. However, low amounts of homing are a major obstacle. We aimed to investigate the role of melatonin pretreatment in BMMSC homing into experimental liver fibrosis. Methods: BMMSCs were obtained, grown, propagated and preconditioned with 5 µ...
متن کاملHighly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells.
Tracking transplanted stem cells using magnetic resonance imaging (MRI) could offer biologic insight into homing and engraftment. Ultrasmall dextran-coated iron oxide particles have previously been developed for uptake into cells to allow MRI tracking. We describe a new application of much larger, micron-scale, iron oxide magnetic particles with enhanced MR susceptibility, which enables detecti...
متن کامل